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1. INTRODUCTION

1.1 General

Various engineering problems can be reduced to the solution of matrix
eigenvalue problems. Typical examples in the field of structural engineering
are the problem of determination of natural frequencies and the corresponding
normal modes in a dynamic analysis and the problem of finding buckling loads
in a stability analysis of structures. Since the advent of the diaital com-
puter, the complexity of structures which can be treated and the order of
the corresponding eigenvalue problems have been greatly increased. Hence,
the development of solution techniques for such problems has attracted much
attention.

For the dynamic analysis of a linear discrete structural system by

superposition of modes, we must first solve the problem of free vibration

of the system. The free vibration analysis of the linear system without

damping reduces to the solution of the linear eigenvalue problem

AX = A 3X (1.1) j
in which A and B are stiffness and mass matrices of order n, the number of !
degrees of freedom of the structural system. A column vector X is an 4

eigenvector (or normal mode), and the scalar A the corresponding eigenvalue
(or the square of a natural frequency).
The matrices A and B are real and symmetric, and are usually banded and

sparse. If a consistent mass matrix is used, the matrices A and B have the
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same bandwidth [4,5]. If a lumped mass model of the system is used, B will
be diagonal. The matrix B is positive definite, but the matrix A may be
semidefinite. There are n sets of solutions of Eq. (1.1), that is, n eigen-
values and their corresponding eigenvectors. :

Frequently, in practical eigenvalue problems, the order of A and B is
so high that it is impractical or very expensive to obtain the complete
eigensolution. On the other hand, to carry out a reasonably accurate
dynamic analysis of the structure, it is possible to consider only a partial
eigensolution. The partial solution of interest may consist of only few
lowest eigenvalues and their eigenvectors, or eigenvalues in the vicinity
of a given frequency and the corresponding eigenvectors. The method .
described in this study is aimed at effective solution of this type of

problem rather than at a complete eigensolution.

1.2 Object and Scope
The object of this study is to present an iterative method which is

efficient and numerically stable for the accurate computation of 1imited

number of eigenvalues and the corresponding eigenvectors of linear eigenvalue

problems of large order. .
The method developed remedies the major drawbacks of the inverse iter-

ation method with spectral shifting [13]: numerical instability due to

shifting and slow convergence when eigenvalues are equal or close in magni-

tude. The proposed method converges rapidly and is numerically stable for any

number of multiple or close eigenvalues and the corresponding eigenvectors.
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The procedure for distinct eigenvalues is treated in Chapter 2, and a

modified procedure for multiple or close eigenvalues in Chapter 3. Selection

of initial approximate eigenvalues and eigenvectors by the subspace iteration

o W n e WeTER Ty A e

method is described in Chapter 4. To show the efficiency of the proposed
- method, three sample problems are solved: vibration of a plane frame, of

° . a plate in bending, and of an arch. Comparisons are made in Chapter 5 with

a method which is generally regarded as very efficient, the subspace

iteration method.

'k . 1.3 Review of Solution Methods

- Numerous techniques for the solution of eigenvalue problems have been

developed. These techniques can be divided into two classes - techniques

for approximate solution and techniques for “exact" solution.

The approximate solution techniques include well-known static conden-

sation [2,3,24,25,27,42], dynamic condensation [34], Rayleigh-Ritz analysis ]

i 3

[9,13,31,48], component mode analysis and related methods summarized by
Uhrig [50]. These methods are essentially techniques for reducing the size
of a system of equations. The reduction of a system of equations eventually
leads to a loss in accuracy of a solution. However, the advantage of
lessened computational effort for a solution sometimes may compensate for
the loss in accuracy. Moreover, an approximate solution found by these methods
may serve as the starting solution for the exact methods, which will be
discussed next.

The exact methods are designed for the accurate computation of some

or all the eigenvalues and corresponding eigenvectors. These methods consist

f ]:
¢
¢
¢
§

AR SO RN i, S MR S RIRERE, v Tl i SIS iy i K1 LR AU A N AU LAY S BN AR




of vector iteration methods, transformation methods, the method based on
the Sturm-sequence property, polynomial iteration method, and minimization
methods. These methods are well described in Ref. 51. The methods differ
in the choice of which mathematical properties of an eigenvalue problem are
used. The vector iteration methods such as the classical vector iteration
(power method) and simultaneous vector iteration deal with the form of
equations Ax = A Bx. The transformation methods (LR, QR, Jacobi, Givens,
and Householder methods) are based on the mathematical property that the
eigenvalues of a system are invariant under similarity transformations. In
the polynomial iteration method, the roots of det (A - AB) = 0 are found,
and minimization methods are based on the stationary property of the
Rayleigh quotient [43].

In vector iteration methods and minimization methods, both the eigen-
values and corresponding eigenvectors are found simultaneously, but in
other exact methods, only eigenvalues are computed or the computed eigen-
vectors are, in general, not suitable for use in the final solutions. 1In
such methods, another method such as the vector iteration method with a
shift may be used for finding the eigenvector corresponding to a computed
eigenvalue.

For a Timited number of eigenvalues and corresponding eigenvectors of
an eigenvalue problem of large order which we are concerned with in this
study, the above methods have been modified or combined to take advantage
of the useful characteristics of several of the methods. First, the

determinant search method [7,9,22,23] combines the methods based on the Sturm-

sequence property, polynomial iteration, and inverse iteration. In this
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method, eigenvalues in a specified range are approximately isolated by using
the bisection method and the Sturm-sequence property and then Tocated
accurately by the polynomial iteration method. The corresponding eigen-
vectors are computed by inverse iteration with a shift. By this method,
eigenvalues in any range and corresponding eigenvectors can be found.
However, it has the disadvantage that the matrix is factorized in each iter-
ation to locate the eigenvalues of interest.

Another method for the solution of large eigenvalue problems is the
so-called subspace iteration method [6,15,32,39,47], which is a combination
of the simultaneous iteration method and a Rayleigh-Ritz analysis. In this
method, several independent vectors are improved by vector inverse iteration,
and the best approximation to the eigenvectors are found in the subspace of
the iteration vectors by a Rayleigh-Ritz analysis. In this method, eigen-
values at the end of the spectrum and the corresponding eigenvectors converge
very rapidly. This method will be discussed further in Chapter 4.

The inverse iteration method with a shift is known to be extremely
efficient for improving approximate eigenvalues and eigenvectors. However,
as mentioned in the previous section, when the shift is very close to a true
eigenvalue, the method exhibits numerical instability, yielding unreliable
answers [13]. In addition, when the eigenvalues of interest are close to-
gether, their convergence is very slow. Robinson and Harris [44] developed
an efficient method to overcome the above difficulty for distinct eigenvalues
by augmenting the equations used in the inverse iteration method by a side

equation. While this method extracts eigenvalues and eigenvectors simul-

taneously with a very high convergence rate, it has the disadvantage that the

e




algorithm is inefficient for problems with multiple or close eigenvalues.
This method and some improvements on it will be discussed further in the

next chapter.

1.4 Notation
A1l symbols are defined in the text when they first appear.
With regard to matrices, vectors, elements of matrices or vectors, and
iteration steps, the following conventions are generally used:
(1) Matrices are denoted by uppercase letters, as A, B and X.
(2) A column vector is denoted by a lowercase letter with a
superior bar and a subscript, as Sj, Bj and ij.
(3) Elements of a matrix or vector are denoted by a lowercase
letter with a double subscripts, as a-j, bij and X;
(4) Iteration steps are denoted by a superscript, as X(k) '§k)
and x(k).
(5) Increments are denoted by the symbol A, as Axg ) and Ax(k).
Some symbols are assigned more than one meaning. However, in the context

of their use there are no ambiguities.

A, Sj, aij = stiffness matrix, jth column vector of A, element
of A
*(k) = projection of A onto the subspace spanned by vectors
in vk a*(K) oy (k)T 4 y(K)
a = radius of circular arch
B, Bj. bij = mass matrix, jth column vector of B, element of B
*(k) -

= projection of B onto the subspace spanned by vectors
in v k) Ly (T g (k)

.
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th column vector of C(k),

expansion matrix of X(k). J
element of C(k), X(k) = XC(k)
diagonal matrix, see Section 2.2

plate bending stiffness, D, = EH3/12(1-u2)

matrix for finding close or multiple eigenvalues and
eigenvectors, jth column vector of D, see Eq. (3.24)
jteration matrix for D after k iterations, jth column
vector of D(k), see Eq. (3.23)

Young's modulus

diagonal matrix, jth column vector of E, element of
E, see Eq. (A.7)

diagonal matrix, jth column vector of E*, element of
£, £ = -7

thickness of plate

number indicating rate of convergence of eigenvector,
see Eq. (2.13)

moment of inertia of cross-section

identity matrix of order s

indices of matrix elements

superscript indicating number of iterations
lower triangular matrix

Lagrangian, see Eq. (3.6)

average half bandwidth of A, of B

total number of operations required for finding

eigenpairs by the proposed method, by the Robinson-

Harris method, by the subspace-iteration method
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(k) =(k) (k)
) QR xj ’ xij

v(K), 9§k). y$§)

7, 2(K)
(k)
J

8

order of A and B

number of eigenpairs sought

number of iteration vectors by subspace iteration
method, q = max(2p, p+8)

residual vector of approximation to jth eigenpair
after k iterations

number of close and/or multiple eigenpairs sought
number of iterations needed to find eigenpairs by
proposed method, by Robinson-Harris method, by
subspace iteration method

matrix of eigenvectors (modal matrix), jth eigen-
vector, element of X

approximation to X after k iterations, jth column
vector of X(k), element of X(k)

matrix of iteration vectors improved from X(k) by
simultaneous iteration method, jth column vector of
Y(k), element of Y(k)

rotation matrix, approximation to Z after k iterations
error in A§k) or u§§)

increment operator

Kronecker delta
error in igk) or 9§k)

multiple eigenvalue
diagonal matrix of eigenvalues, jth eigenvalue,

A= diag(xl, Aoy « o v xs)
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mass density
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2. DISTINCT ROOTS

2.1 General

In this chapter, a method for finding a simple eigenvalue and the

corresponding eigenvector will be presented. The method developed by
Robinson and Harris [44] is modified here to save overall computational
effort for finding an eigensolution. The Robinson-Harris method is an

application of the Newton-Raphson technique for improving the accuracy of

an approximate eigenvalue and the corresponding approximate eigenvector.

In the proposed method, a modified form of the Newton-Raphson technique 1is

applied instead of'the standard one used in the Robinson-Harris method.

In Section 2.2, the Robinson-Harris method will be discussed first;
then the proposed method will be presented. The convergence rate of the
proposed method and the number of operations per iteration will be given in
Section 2.3. The estimation of error in an approximate solution is found
in Section 2.4. A technique for the examination of the converged solution
to determine whether the eigenvalues and corresponding eigenvectors of
interest have been missed and a method for finding a missed solution will

be presented in Section 2.5.
2.2 The Iterative Scheme
Let us consider the following linear eigenvalue problem i

Aij = Aj B;(j (j =1, 29 L n) (2.1)




o TR

',,4

n

where A and B are assumed to be given symmetric matrices of order n and B
is taken to be positive definite. The Aj and ij are the jth eigenvalue and
the corresponding eigenvector.

Let us assume that an initial approximate solution of Eq. (2.1), x.(o)

J
and §j(o), is available. Denote an approximate eigenvalue and the corre-
sponding eigenvector after k iterations by Aj(k) and ij(k) (k=0,1,...).
Then, we have
= (k) _ . (k) oz (k) _ = (k)
ij Aj ij r; (2.2)

where Fj(k) is a residual vector.
The object is to remove the residual vector in Eq. (2.2). The Newton-
Raphson technique is applied for this purpose. Let the (k + 1)th approxi-

mation be defined by

(k+1) _ . (k) (k)
Aj Aj + AAj
= (k#1) _ = (k) , .z (K) ’
xj xj + ij (2.3)
where A (k) and Aij(k) are small unknown incremental changes of Aj(k) and i
1
ij(k). Substituting A.(k+1) and ij(k+1) of Eq. (2.3) for A and ij in : ,
Eq. (2.1) and discard1ng a nonlinear term 82y (k)-BAx (k) as very small ;
compared with the other, linear, terms, we get 1
Kg) oz (K) _ o (k) o= () _ = (K) o
A - A ( B . - . . = - . . .
( j ) AxJ AAJ BxJ ry (2.4) -

where ?j(k) is the residual vector defined in Eq. (2.2).
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Note that in Eq. (2.4), there are n+l scalar unknowns (AAj(k) and n
components of Aij(k)), but only n equations. Hence, it is required for the
solution of Eq. (2.4) that either the number of unknowns be reduced or one
equation added. Derwidue [16] and Rall [41] reduced the number of unknowns
by setting the nth component of the vector Ai.(k) or i.(k+1)

J J
value - zero or one. In these methods, it may happen that an unfortunate

at a preassigned

choice of one component results in failure of the procedure.

Instead of reducing the number of unknowns, Robinson and Harris [44]
added an extra equation (side condition) to the system of Eq. (2.4), to
arrive at a set of n+l equations in n+l unknowns. This side condition is

:
ij(") . BAiJ.(") =0 (2.5)

(k)

Equation (2.5) means that the incremental value Aij is orthogonal to

(k)
J

the current approximate eigenvector X with respect to the matrix B.

The side condition prevents unlimited change in the ij(k). The resulting

set of simultaneous linear equations may be written in matrix form as
NG w] [
A - Aj B : - ij ij

- -

_ ;j(k)

O L (k)
- xj B . i ij ]

(k)

where the residual vector Fj is given in Eq. (2.2). The coefficient

matrix for the incremental values is of order n+l and symmetric. Moreover,

it is nonsingular if Aj is not multiple [44]. Equation (2.6) may be solved

k) and Ai.(k) by Gauss elimination, or by any other suitable

(
for AAj j
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technique. Note that the submatrix in the coefficient matrix (A - A.(k)B)

e J

is almost singular when Aj(k) is close to Aj. However, this does not cause

- any difficulty in solving Eq. (2.6), since in the elimination process only

- the last pivot element, in general, becomes very small. Thus, the inter- 4
|

- e

change of colums and rows does not increase significantly the column height

e o

of the factorized matrix. The improved values, Aj(k+1) and i.(k+1). are

; :. computed from Eq. (2.3). The procedure employing Eqs. (2.3) and (2.6) is
- repeated until the errors in the Aj(k) and ij(k) are within allowable toler- |
.- ances. The method of estimating these errors will be discussed in Sec-
‘ . tion 2.4.
- The convergence of the above process for an eigenvalue and the corre-
T sponding eigenvector has been shown to be better than second order; the
:_ order has been found to be 2.41 [44]. However, the algorithm using Eq. (2.6)
- ’ requires a new triangularization in each iteration, since the values of the
v

elements of the coefficient matrix are changed in each iteration as a result

4

of changing from Aj(k) to Aj(k+1). The number of operations (multiplications

and divisions) required in such a triangularization is very large.

po 2y
o O L N N

To avoid the complete elimination procedure in each iteration, the

following equations instead of Eq. (2.6) are used in the proposed method.

1
r - r - - -

A - AJ.(O)B , _B,—(j(k) M-(j(k) N '-”J-(k)

(2.7) a

T
_ 7 (k)
xj B

0 AX (k) 0

¢
|
i
I |
i
i
!
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where the residual vector Fj(k) is defined in Eq. (2.2). Equation (2.7)
was obtained by introducing Eq. (2.3) into Eq. (2.1) and discarding a small
linear term (Aj(k+1) - Aj(o)) Baij(k). Note that Eq. (2.7) differs from
Eq. (2.6) in such a way that the coefficient matrix in Eq. (2.6) has the
submatrix (A - Aj(k)B), while the coefficient matrix in Eq. (2.7) has

(A - Aj(o)B). The coefficient matrix in Eq. (2.7) is also symmetric, and

nonsingular if A. is not multiple. The nonsingularity of the coefficient

J
matrix will be proved, in passing, in Appendix A.

From the form of the coefficient matrix, it can be seen that once the
T

matrix is decomposed into the form LDL , where L is lower triangular and D

.1s diagonal, only a small number of additional operations is required
for the solution of Eq. (2.7) in fhe succeeding iterations, since only the
vector Bij(k) in the matrix is changed in each iteration. The proposed

method therefore considerably reduces the number of operations required in

each iteration. On the other hand, the method lowers the convergence rate

; because of the neglect of the small linear term (Aj(k+1) - xj(o)) (Bij(k)),

h which in turn increases the number of iterations for a solution. However,

the overall computational effort for a solution does decrease. It will be
seen in Chapter 5 that the proposed method is actually more efficient than

the Robinson-Harris method.
2.3 Convergence Rate and Operation Count

The efficiency of a numerical method such as the one proposed here can
be estimated given the convergence rate and the number of operations per

iteration required in the process. The convergence analysis, which is given

-
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in Appendix B, will be summarized as follows. Let an approximate eigenvector

xj(k) be expanded in terms of the true eigenvectors ;i’ i.e.,

n
= (k) _ — (k) -
i=1
where ci.(k) is a coefficient of the vector ii‘ If yj(k) is the error in
Aj(k) and ej(k) the error in ij(k), they may be defined as
Ay - A.(k)
Y.(k)= B TN (2.9)
J A
J
T n ( 7172
o k
. kij ¥
1=l
o (V) - | (2.10
— (k
. kij ¥
i=1

where e.(‘) is a measure of the angle between the vectors E.(k) and ¢, and

J
(k) (k) =T _ k
25 0 Cnj and c; = (0,..,0, ij( ),0,---90)-

T
where Ej(k) = (clj(k), c
(k)

The geometric interpretation of ej is illustrated in Fig. 1.
With the above definitions, the errors in Aj(k+1) and ij(k+1) may be
written as (see Appendix B)
(k+1) _ 2 y (k) (2.11) ;

Y i

DR AU STRINEINGS 5 i1 A GG i 5 i it cor— = s
N -
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(k+1) _ o (k)
ej hej (2.12)
where
ma As - A.(O)
= max = ... 2.
m J

Equations (2.11) and (2.12) show that the convergence character of both
eigenvalues and eigenvectors is linear. However, the eigenvalues converge
much more rapidly than the eigenvectors. Ncte also that the closer Aj is
to another eigenvalue, the larger a is, yielding slow convergence. Hence,
the method is not suitable for finding close eigenvalues and the corre-
sponding eigenvectors. .

Another important consideration which should be taken into account in
estimating the efficiency of numerical methods is the number of operations
per iteration. One operation is defined as one multiplication or division,
which almost always is followed by an addition or a subtraction. For the
expression of this number, let m, and m, be the half band-widths of the
matrices A and B, and let n be the order of A and B. Let Tp be the number
of iterations needed to find p eigenpairs by the proposed method and Tr by
the Robinson-Harris method. Then, the number of operations for p eigenpairs,
Np, required by the proposed method is

N = lpn (m2 +3m_+2m_+2)+ Tn (5m_ + 2m
p 2 a a Y a

b b+ 6) (2.14)
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and by the Robinson-Harris method, Nr’ is

L, (o2
Nr 2Trn (ma + 13ma +

ém,_ + 12) (2.15)

b

It can be seen that the number of operations per iteration required by the

proposed method is much smaller than for the Robinson-Harris method. The

development of the above expressions is given in Table 1.

2.4 Errors in Approximate Eigensolutions

An important feature of an iterative method such as the proposed method

is some means of estimating the error in a computed solution. This permits

one to terminate the iteration process at the point'where a sufficiently

accurate result has been obtained.

It is important to have estimates in

terms of numbers available in the calculation, since it is impossible to

compare with the exact values.

The error in Aj(k), y.(k), can be estimated as follows: from

J

Eqs. (2.9) and (2.11)

Substituting Eq.

Y

J

(k) .

1 -

=, (k+1) 2 (k)
AJ. AJ. + h Y; AJ. (2.16)
(2.16) for Aj in Eq. (2.9) gives
(6
] - o
Az
J
K
= (2.17)

(k) (k+1
Y AJ./AJ. F

T N R Yy R - TR e w1y

oy

i N

g

[y
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Since 0 < h << 1 and 0 < v;) << 1, from Ea. (2.17)

k.(k)

© |-
A R (53}

V(1) ()

J
(k+1)
A5

(2.18)

= . k k+1
The error in x.(k), ej(k), can be approximated by [ej( ) . ej( )]

since ej(k+1) << ej(k). Furthermore, from Fig. 1,
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- (k - (k)
ij( i Bij( (2.19)
= (k) B;(j(k)
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The number of operations for the estimation of ej(k) is only about
n (2mb + 3), which is small compared with the number of operations per iter-

ation (see Section 2.3).
2.5 Treatment of Missed Eigensolutions

Some of the eigenvalues and corresponding eigenvectors of interest may
be missed when the initial approximations are not suitable. In order to
check whether this occurs, the Sturm-sequence property [9,31,39,48,51] may

be applied. The Sturm-sequence property is expressed as follows: if for

(0) T

an approximate ejgenvalue Aj s (A - Aj(O)B) is decomposed into LDL ,

where L is a Tower triangular matrix and D a diagonal one, then the number

of negative elements in D equals the number of eigenvalues smaller than
(0)
A,
J .
negligible extra computation, since the decomposition of the matrix

A computed eigenvalue can be checked using the above property with

(A - Aj(O)B) has already been carried out during the procedure for the
solution of Eq. (2.7). -

If some of the eigenvalues of interest are detected to be missing,
finding them consists of three steps: finding approximations to the mis:ed
eigenvalues, finding approximate eigenvectors corresponding to the missad
eigenvalue